Search results

1 – 10 of 251
Article
Publication date: 13 November 2007

B.G. Lopez, S.B. Valdez, K.R. Zlatev, P.J. Flores, B.M. Carrillo and W.M. Schorr

Aggressive environments that enhance indoor corrosion in industrial plants decrease the yielding of electronic equipment, causing electrical failures. The purpose of the present…

Abstract

Purpose

Aggressive environments that enhance indoor corrosion in industrial plants decrease the yielding of electronic equipment, causing electrical failures. The purpose of the present paper is to evaluate corrosion rates in metals used in electronic devices as a function of temperature, humidity and the concentrations of some air pollutants in order to predict the optimal conditions preventing or minimizing corrosion.

Design/methodology/approach

Atmospheric pollutants mainly sulphur oxides, penetrating through small crevices and holes into electronic plants in combination with climatic factors such as humidity and heat, promote corrosion. The corrosion rate of the five most used metals in the electronics industry: carbon steel, copper, nickel, silver, and tin, were studied gravimetrically as a function of variations in humidity, temperature and air pollutant concentrations from 2003 to 2005. The samples were exposed in an instrumented boot to indoor conditions and gravimetric measurements were performed together with measurements of the above‐mentioned parameters. Mathematical simulation applying Math Lab software was carried out as well. The ternary diagrams for pollutants, temperature and relative humidity were applied as a useful tool to correlate these parameters in indoor conditions with the corrosion rate of metals applied in the electronics industry.

Findings

The obtained results have shown that the presence of even small concentrations of air pollutants promoted corrosion processes when time of wetness conditions were reached.

Practical implications

The study was carried out in order to minimize the corrosion losses of the electronic plants situated especially in Mexicali City located on a semi‐desert zone in the Northwest of Mexico.

Originality/value

This paper establishes the relationship of variations of pollutants concentration, temperature and the relative humidity with the corrosion rate of metals in indoor conditions in the electronics industry located in the semi‐arid zone of Mexicali. Design was characterized and simulated using the MathLab software.

Details

Anti-Corrosion Methods and Materials, vol. 54 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 29 June 2010

S.N. Santillan, S.B. Valdez, W.M. Schorr, R.A. Martinez and S.J. Colton

The purpose of this paper is to investigate the corrosion of the heat‐affected zone (HAZ) and weld zone of austenitic stainless steels that have been welded using two different…

Abstract

Purpose

The purpose of this paper is to investigate the corrosion of the heat‐affected zone (HAZ) and weld zone of austenitic stainless steels that have been welded using two different processes. The corrosion behavior is evaluated in synthetic seawater using the electrochemical polarization technique.

Design/methodology/approach

Welded and unwelded UNS S30403 specimens were welded by flux core arc, and gas tungsten arc welding (GTAW) techniques. The test equipment consisted of an electrochemical three‐electrode cell using synthetic seawater as the corrosive medium. The scan rate was 10 mV/s and the potential range was −500‐500 mV vs saturated calomel electrode. The pH for the synthetic seawater was around seven. The electrochemical tests were performed after 1, 2, 3, and, 11 weeks. The metal surface was characterized by examination using an inverted microscope and scanning electron microscopy.

Findings

The polarization measurements of the flux core arc welding‐HAZ showed a high corrosion susceptibility, while GTAW‐HAZ presented good corrosion performance.

Practical implications

With the application and correct interpretation of this electrochemical technique, designers, welding engineers, and manufactures can access important information and take correct decisions regarding welding processes to meet corrosion resistance requirements.

Originality/value

The methodology and approach of interpreting the polarization plots used in this research can be applied to study other welding techniques and different welded metals in specific corrosive media, which will be of value to the welding industry.

Details

Anti-Corrosion Methods and Materials, vol. 57 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 1 November 2006

S.B. Valdez, R.K. Zlatev, W.M. Schorr, G.N. Rosas, Ts. Dobrev, M. Monev and I. Krastev

To develop and test a rapid method for evaluation of the corrosion protection (CP) of carbon steel (CS) by vapour corrosion inhibitors (VCI) films.

Abstract

Purpose

To develop and test a rapid method for evaluation of the corrosion protection (CP) of carbon steel (CS) by vapour corrosion inhibitors (VCI) films.

Design/methodology/approach

The determination of the CP by VCI on CSs is commonly carried out in a chamber applying neutral salt spray (NSS) and usually it takes many days. The common disadvantage of the various rapid methods created until now is the need of special laboratory equipment making their application complicated and inconvenient for field tests. The method for CP measurement of VCI films on CS described in this study is based on measurement of the height of the anodic peak under galvanostatic condition applied earlier on other types of films and coatings. By means of a calibration plot: peak height (V) vs NSS protection time (s), CP of VCI films on CS specimens expressed in hours NSS is determined in a few seconds without using an NSS chamber. Measurements of CP by VCI films under field conditions are performed applying a hand held tester.

Findings

Two groups of CS UNS G10180 steel specimens with increasing thickness of VCI films were studied – one in an NSS chamber and the second by the application of a corrosion tester. The correlation between the results obtained for the two groups of specimens was found and a calibration plot was made.

Practical implications

Based on this method, a special corrosion tester was developed, able to measure under field conditions as well.

Originality/value

The method subject of the paper is a further development of a galvanostatic method developed by the authors for CP evaluation of chromate films of Zn and Cd coatings. The method was modified according to the properties of VCI films

Details

Anti-Corrosion Methods and Materials, vol. 53 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 21 March 2008

S.B. Valdez, B.M. Carrillo, R. Zlatev, M. Stoytcheva, W.M. Schorr, R.J. Cobo, L.T. Perez and J.M. Bastidas

Colonies of Actynomyces israelii bacteria have been found in removed copper intra‐uterine devices (IUD) used as a long‐term contraceptive method. The purpose of this paper is to…

Abstract

Purpose

Colonies of Actynomyces israelii bacteria have been found in removed copper intra‐uterine devices (IUD) used as a long‐term contraceptive method. The purpose of this paper is to characterize the biofilm developed under anaerobic conditions by Actynomyces israelii on IUD surface, and its influence in the copper corrosion processes.

Design/methodology/approach

The dissolution of copper on the intra‐uterine cavity prevents conception because of the toxic effect of the ions released. Nevertheless, microbiological growths have been detected on the IUD devices retired after long periods of insertion. In order to know about the influence of the biofilm on the corrosion of copper, electrochemical, spectroscopic and surface analysis techniques were applied to study the phenomenon.

Findings

A porous Actynomyces israelii biofilm was formed on the copper IUD surface. The bacteria colony had developed in an exopolimeric substrate, which protects it from the toxic effect of copper ions. The corrosion process was not inhibited by the biofilm, due to the pores present which permit the transport of species through them.

Practical implications

The results of this study show that there is no decay in the contraceptive function of the IUDs due to the presence of a bacterial biofilm on its surface.

Originality/value

The relationship between microbial colonization and the corrosion process of copper IUD under anaerobic conditions was characterized. These results will complement previous investigations performed on the study of corrosion of copper IUDs under different conditions.

Details

Anti-Corrosion Methods and Materials, vol. 55 no. 2
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 26 August 2014

I.R. Ramos, S.B. Valdez, K.R. Zlatev, W.M Schorr, B.M. Carrillo, M.S. Stoytcheva, I.R. Garcia and M.M. Martinez

– The purpose of this investigation was to develop a digital instrument for the quantitative evaluation of pitting corrosion in metals.

Abstract

Purpose

The purpose of this investigation was to develop a digital instrument for the quantitative evaluation of pitting corrosion in metals.

Design/methodology/approach

This investigation comprised two central parts: research, testing and monitoring of the formation of pitting by conventional methods and applying American Society for Testing and Materials (ASTM) Standards, and the development of a virtual instrument based on the LabVIEW 2010 platform.

Findings

The methodology used was suitable for the analysis of pitting on carbon steel and aluminum alloy UNS A96061, used in the aerospace industry.

Practical implications

This technique allows pits to be to localized, measured and quantified on metallic surfaces, for corrosion evaluation in atmospheric and industrial environments.

Originality/value

This combination of conventional and digital methods can assist in corrosion control of pitting in industrial equipment.

Details

Anti-Corrosion Methods and Materials, vol. 61 no. 5
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 26 June 2009

O.L. Vargas, S.B. Valdez, M.L. Veleva, K.R. Zlatev, W.M. Schorr and G.J. Terrazas

The purpose of this paper is to evaluate the corrosion of silver due to hydrogen sulphide pollutant in indoor conditions at a microelectronics plant located in Mexicali, Baja…

Abstract

Purpose

The purpose of this paper is to evaluate the corrosion of silver due to hydrogen sulphide pollutant in indoor conditions at a microelectronics plant located in Mexicali, Baja California, a semi‐arid zone in the northwest of Mexico.

Design/methodology/approach

Silver coupons and silver plated on to copper‐lead frames are exposed in the assembly process building of a microelectronics company during a period of 60 days and also in a sheltered test chamber that simulates indoor conditions with ambient concentrations of atmospheric pollutants, temperature and relative humidity (rH). Other exposures are made in the test chamber to study the corrosion behaviour of silver coupons over a duration of 24 months. The corrosion products were analysed using the Scanning Electron Microscope (SEM) and Energy Dispersive X‐ray Spectroscopy (EDS). Corrosion rates were measured by Quartz Crystal Microbalance (QCM) under laboratory‐controlled conditions.

Findings

The presence of silver sulphide corrosion products, dendrites and whiskers is observed on the exposed samples using SEM and EDS analysis.

Practical implications

The paper is designed to establish whether the company, where the exposure is taking place, constituted an indoor environment with outdoor hydrogen sulphide pollutant in sufficient concentration to induce silver corrosion.

Originality/value

The methodology used in this work can be applied to study the indoor corrosion behaviour of other metals, which will be of interest to the microelectronics industry.

Details

Anti-Corrosion Methods and Materials, vol. 56 no. 4
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 25 May 2010

Lopez Badilla Gustavo, Valdez Salas Benjamin, Schorr Wiener Miguel, Rosas Gonzalez Navor, Tiznado Vazquez Hugo and Soto Herrara Gerardo

The purpose of this paper is to study the indoor corrosion of metals used in the electronics industry, as influenced by climate factors.

Abstract

Purpose

The purpose of this paper is to study the indoor corrosion of metals used in the electronics industry, as influenced by climate factors.

Design/methodology/approach

Corrosivity levels inside industrial plants were evaluated to evaluate the deterioration of metals.

Findings

Relative humidity, temperature, and time of wetness are recorded and related to the corrosion process.

Originality/value

Control of climate factors indoors in industrial plants to reduce and control the corrosion process of metals used in the electronics industry.

Details

Anti-Corrosion Methods and Materials, vol. 57 no. 3
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 8 November 2011

Gustavo Lopez, Hugo Tiznado, Gerardo Soto Herrera, Wencel De la Cruz, Benjamin Valdez, Miguel Schorr and Zlatev Roumen

The electronics industry has grown over the past 50 years, mostly in developed countries, contributing to their economic progress. Particularly in the Baja California State…

Abstract

Purpose

The electronics industry has grown over the past 50 years, mostly in developed countries, contributing to their economic progress. Particularly in the Baja California State located in the northwest of Mexico, these companies have prospered in the industrial parks of Mexicali considered as an arid zone and Ensenada, a port and city on the Pacific Ocean considered as a marine region. In both environments, during winter and summer, the climate impacts on indoor conditions, affecting humidity and temperature, and generating corrosion which decreases the yields of the electronic devices and industrial machines. The purpose of this paper is to investigate the effects of corrosion on electronic devices in these arid and marine environments.

Design/methodology/approach

The paper determines the corrosivity levels inside industrial plants of desertic and coast regions in Mexico, to evaluate the deterioration of electronic metals.

Findings

Relative humidity, temperature, time of wetness, are recorded and related to the corrosion process in arid and marine environments.

Research limitations/implications

Some missing information about air pollution in Ensenada from some Environmental Monitoring Stations was a limitation, and the need to use complex atmospheric techniques.

Originality/value

The paper shows that it is very important to control metallic corrosion generated by climate factors and air pollution in indoor industrial plants: the corrosion of electronic devices and equipments depletes their yield and can lead to loss‐making failures.

Details

Anti-Corrosion Methods and Materials, vol. 58 no. 6
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 3 January 2017

Mario Celso Genovez, Luiz Henrique Araujo, Tiago Dinis Pinto and Radim Hrdina

This paper aims to describe the results of lab testing of a newly developed organic inhibitor V-active VCIs. The findings demonstrate that it is possible to eliminate or reduce…

Abstract

Purpose

This paper aims to describe the results of lab testing of a newly developed organic inhibitor V-active VCIs. The findings demonstrate that it is possible to eliminate or reduce the oxidizing action of water, thereby extending the allowable time before painting after hydrojetting, and that the new corrosion inhibitor technology does not interfere with the final quality of paint adhesion.

Design/methodology/approach

Metallic specimens were treated/washed in standard lab condition. A 2 per cent V-active VCI SPH1712 water solution was prepared by diluting the inhibitor in industrial water. Metal sample plates were examined after blasting and after subsequent drying, and were submitted to the paint adhesion tests, cathodic disbondment, total soluble salts, time for formation of flash rust and cyclic corrosion test type III (20 cycles), to evaluate the duration of temporary protection and oxidation prevention and influence on paint adherence.

Findings

Using the V-active VCI proposed technology, it was possible to minimize or eliminate the oxidizing action of the water when the metal is exposed to saline moisture in a closed environment, extending the acceptable time before painting without interfering with the final quality of painting.

Practical implications

The proposed technology allows an increase in the prepared (wet blasted) steel surface during cleaning and preparation, thereby reducing labor and product costs, and reduces water consumption during the preparation process. Practical applications in the shipbuilding, ship maintenance and oil and gas production industries include the preservation of internal tubes and pipes, protection during hydrostatic test processes and cleaning with water and corrosion prevention in diesel tanks contaminated with water.

Originality/value

The intent of this paper is to present the obtained results for a new formulation of organic chemical inhibitors that use water as the application medium. In addition to this property, this group of organic inhibitors maintains the properties of volatile inhibitors. Thus, these compounds are generically known as V-active VCIs.

Details

Anti-Corrosion Methods and Materials, vol. 64 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

Article
Publication date: 6 January 2012

Fernando Garcia, Ana Leonor Rivera Lopez, Juan Campos Guillén, Luis Hernández Sandoval, Carlos Regalado González and Victor Castaño

The purpose of this paper is to report a study of microbiological influenced corrosion (MIC) of copper due to bacteria strains isolated from potable water pipes and oxidation…

Abstract

Purpose

The purpose of this paper is to report a study of microbiological influenced corrosion (MIC) of copper due to bacteria strains isolated from potable water pipes and oxidation lagoons using electrochemical noise (EN) analysis and scanning electron microscopy (SEM).

Design/methodology/approach

Bacteria strains isolated from copper surfaces of potable water pipes and from oxidation lagoons were identified, based on the 16S rDNA gene sequence analysis. Corrosion studies were undertaken over a period of six weeks, placing copper electrodes inside an LB culture media with and without bacteria. The corrosion resistance was obtained using EN analysis. In all the cases, the corrosion type was identified. SEM images of the copper electrodes were taken to evaluate the surface condition.

Findings

The bacteria strains identified were: Pantoea agglomerans, Alcaligenes faecalis, Bacillus cereus, Brucellaceae bacterium, Enterobacter cloacae, Delftia tsuruhatensis, and Pseudochrobactrum asaccharolyticum. EN analysis gave noise resistance values in the range 1,036‐5,040 Ωcm2 for the control samples and in the range of 2,336‐22,573 Ωcm2 for samples that had been inoculated with bacteria. It was found that a decrease in the rate of corrosion took place due to the development of a biofilm by the microorganisms on the copper surface. SEM images corroborated the presence of the biofilm on the copper electrodes.

Practical implications

The isolated bacteria strain reduced the rate of corrosion on the copper electrodes, as shown by the SEM images and EN analysis results, due to the formation of a biofilm that can act as an anticorrosive coating.

Originality/value

Even though MIC is a known phenomenon, it has not been reported that isolated bacteria strains can reduce corrosion on the surface of copper potable water pipes and in oxidation lagoons.

Details

Anti-Corrosion Methods and Materials, vol. 59 no. 1
Type: Research Article
ISSN: 0003-5599

Keywords

1 – 10 of 251